Hyperbolic Functions Calculator
Calculate hyperbolic functions (sinh, cosh, tanh, csch, sech, coth) and their inverses
Select a hyperbolic function and enter a value:
Understanding Hyperbolic Functions
Hyperbolic functions are analogous to the circular trigonometric functions but are defined in terms of the exponential function. They appear in various areas of mathematics, physics, and engineering.
Basic Definitions
Hyperbolic Sine (sinh)
sinh(x) = (ex - e-x) / 2
Hyperbolic Cosine (cosh)
cosh(x) = (ex + e-x) / 2
Hyperbolic Tangent (tanh)
tanh(x) = sinh(x) / cosh(x) = (ex - e-x) / (ex + e-x)
Hyperbolic Cosecant (csch)
csch(x) = 1 / sinh(x) = 2 / (ex - e-x)
Hyperbolic Secant (sech)
sech(x) = 1 / cosh(x) = 2 / (ex + e-x)
Hyperbolic Cotangent (coth)
coth(x) = cosh(x) / sinh(x) = (ex + e-x) / (ex - e-x)
Inverse Hyperbolic Functions
Inverse Hyperbolic Sine (asinh)
asinh(x) = ln(x + √(x² + 1))
Inverse Hyperbolic Cosine (acosh)
acosh(x) = ln(x + √(x² - 1)), for x ≥ 1
Inverse Hyperbolic Tangent (atanh)
atanh(x) = 0.5 * ln((1 + x) / (1 - x)), for |x| < 1
Inverse Hyperbolic Cosecant (acsch)
acsch(x) = ln(1/x + √(1/x² + 1)), for x ≠ 0
Inverse Hyperbolic Secant (asech)
asech(x) = ln((1 + √(1-x²)) / x), for 0 < x ≤ 1
Inverse Hyperbolic Cotangent (acoth)
acoth(x) = 0.5 * ln((x + 1) / (x - 1)), for |x| > 1
Key Properties
- sinh(-x) = -sinh(x) (odd function)
- cosh(-x) = cosh(x) (even function)
- cosh²(x) - sinh²(x) = 1
- 1 - tanh²(x) = sech²(x)
- coth²(x) - 1 = csch²(x)
Applications
Hyperbolic functions appear in many areas including:
- Solutions to differential equations
- Calculations of the shapes of hanging cables (catenaries)
- Electric and magnetic fields
- Signal processing
- Special relativity in physics
- Geometric calculations involving hyperbolas
Examples
Example 1: sinh(1) = (e¹ - e⁻¹) / 2 ≈ 1.1752
Example 2: cosh(0) = (e⁰ + e⁻⁰) / 2 = (1 + 1) / 2 = 1
Example 3: tanh(2) = (e² - e⁻²) / (e² + e⁻²) ≈ 0.9640